Discussion: Debt with Endogenous Safety Covenants: Default and Corporate Securities

Harjoat S. Bhamra UBC, Sauder School of Business

September 2007

Objective

► Value corporate debt with an *endogenous* safety convenant

► What type of safety convenants are considered

- Promise to repay principal if equity value falls below some threshold
- ► Why is this covenant endogenous?
 - In a typical structural model (e.g. Merton (1973) and Leland (1998)), equity value is endogenous, unlike asset value.

Motivation

- There is concern that issuing debt with safety covenants can *increase* the probability of bad events, such as default
- Firm's which have issued debt with endogenous safety covenants, such as Enron, have suffered a sharp *fall* in share price.

Questions:

Inside a standard structural model, what impact do endogenous safety covenants have on the share price and default probability and why?

Model

 \blacktriangleright Exogenous asset value, V

 \blacktriangleright Debt value is D. Debt has face value K and matures at time T

Equity value is E

No safety covenants: Merton (1973)

- ▶ The debtholder receives her principal K if $V_T > K$.
- ▶ If $V_T \leq K$, default occurs and the firm's assets V_T are transferred to the debtholders
- ► The debtholder owns a European-style option

$$D_t = E_t^{\mathbb{Q}}[e^{-r(T-t)}\min(V_T, K)]$$

- ▶ The equityholders own the firm's assets less the payment of K to the bondholders, unless default occurs, i.e. $V_T \leq K$, in which case the value of equity is zero.
- ► The equityholder owns a European-style call option

$$E_t = E_t^{\mathbb{Q}}[e^{-r(T-t)}\max(V_T - K)]$$

With a Safety Covenant

Safety covenant

- **1.** Debtholder can get back principal K, if $E \leq F$, where F is exogenous
- **2.** Equityholder can choose to pay back principal K to debtholder, if E>K
- ▶ Time at which debtholder chooses to get back principal is some stopping time τ_d
- ▶ Time at which equityholder chooses to repay principal is some stopping time τ_e
- Debt value now has two components

1. When $E \leq F$, the debtholder must decide when to exercise the option, provided that the equityholder has not previously paid back the debtholder, i.e. $t < \min(\tau_e, T)$

$$E_t^{\mathbb{Q}}[e^{-r(au_d-t)}\min(V_{ au_d},K)]$$

2. The debtholder receives min(V, K) at date τ_e , when the equityholder repays her

$$E^{\mathbb{Q}}_t[e^{-r(au_e-t)}\min(V_{ au_e},K)]$$

Overall debt value is the optimal value (wrt τ) of the sum of the two components:

 $E_t^{\mathbb{Q}}[e^{-r(\tau_d-t)}\min(V_{\tau_d},K)\mathbf{1}_{E_{\tau}\leq F}\mathbf{1}_{\tau<\min(\tau_e,T)}+e^{-r(\tau_e-t)}\min(V_{\tau_e},K)\mathbf{1}_{\tau=\tau_e}]$

▶ Debtholder owns an American option with payoff min(V, K).

Similarly, equity value has two components

$$E_t^{\mathbb{Q}}[e^{-r(\tau-t)}\max(V_{\tau}-K,0)\mathbf{1}_{E_{\tau}\geq F}]$$

 and

$$E_t^{\mathbb{Q}}[e^{-r(\tau_d-t)}\max(V_{\tau_d}-K,0)\mathbf{1}_{\tau_d<\tau \text{ or }(E_{\tau}\leq F \text{ and }\tau=\tau_d)}]$$

Debtholders' Optimal Stopping Problem

▶ Just ask for prepayment of principal whenever $E \leq F$.

Equityholders' Optimal Stopping Problem

► Hard: The equityholders can only decide to redeem the debt's face value whenever *E* > *F*, but *E* itself depends on the equityholder's decision!

(Some of the) Main Results

Protection for debtholders is at expense of equityholders and the covenant reduces equity value

Default probability is increased by the safety covenant

Minor Comments

▶ Paper has many results. Decide which ones to focus on

► More intuition